用数据驱动产品优化

所谓的“数据驱动业务增长”是以企业产品业务线海量数据的收集、存储、可视化、分析、挖掘作为核心支撑的,全体业务线人员参与的,以精准、细分和精细化为特点的运营战略。 即针对运营、产品、市场、客服等部门的运营数据,通过可视化、可量化、可细化、可预测等一系列数据分析方法论以及理论、经验等来进行业务分析,挖掘业务增长点。 具体的主要以“产品以及官网流量数据分析、目标用户行为数据分析、目标用户群转化分析、活动营销策划推广数据分析、用户画像数据分析、产品功能优化迭代、竞争调研以及监控数据分析、渠道效果分析等”。 # 一、数据分析如何应用于指标增长 产品的永恒主题一定是增长,而增长的背后一定要有数据的支撑,也就是我们所说的数据分析。我把市面上所有的增长方向分为3大流派,分别是市场营销派、实验增长派和技术派,下面详细讲一下数据分析在这三种增长方向的作用。 ## 市场营销派: 概括的说就是渠道运营、市场运营花钱买流量,在这个环节不要觉得花钱买流量就叫增长,这事谁都可以做。但如何不花钱或者花更少的钱,获取更多、更优质精准的流量,那才叫增长。**在这个环节,数据分析师负责搭建渠道评估模型、反作弊模型去监控渠道质量,指导渠道或老板,保证流量的优胜略汰**。互联网有句话,4成的流量都是虚假的,信不信由你,反正我是相信。所以,如何利用好数据分析守住企业第一道流量关卡,显得尤为重要。 ## 实验增长派: SeanEllis在他写的《增长黑客》里面提及到最多的方法,就是这种实验增长派。通过发现问题、提出想法、实验测试和复盘分析这四步来构建实验模型,在成本可控范围内不断测试,领悟增长真谛。**发现问题和提出想法离不开关键指标,关键指标也叫北极星指标**,德鲁克说过:“无法去量化,就不能控制”,通过数据分析让业务有数看,有衡量,再去增长。实验测试阶段涉及到用户分桶实验、AB test等,同样离不开数据分析。最后,结果复盘的时候,需要利用数据分析中的统计学原理,是否显著,置信度等方法,来论证你的实验结论是否严谨可靠。 例如: **1.建立用户转化漏斗** 所谓用户转化漏斗,就是你的业务是如何一步步将一个用户骗到手的。举下面;的几个例子,你一看就明白了: >广告:展示 → 点击 → 转化 游戏:下载 → 激活 → 留存 → 付费 把妹:摇一摇 → 约会 → 牵手 → 接吻 → 上床 无论上面哪种业务,都可以分解为一系列的阶段,经过每个阶段,用户都只有一部分留存下来。对漏斗的每一个环节准确地记录数据,以便分析和优化各个环节的通过比率,是数据运营的基础设施。 **2.用多维度数据报表找问题** 数据运营中的常见痛点,是明知道转化漏斗上某个环节的通过率较低,却找不到提高的途径。常用的解决思路,就是把数据打细,分解到各个维度上分别观察,这往往能发现产品或系统上的问题。如果多个维度能够灵活组合观察数据,就成了一个数据魔方(Data Cube)。下面的图虽然与互联网产品运营的漏斗数据没关系,但是原理是一样的。 ![SQhUxTT0iMFgsFEbS7Ha.jpg](https://cos.easydoc.net/17082933/files/kf23uovw.jpg) 比如说,你发现广告的点击率低,进而查到是Chrome浏览器上的点击率拉低了整体统计,那么就要在Chrome浏览器上深究原因,结果很可能是你的Flash广告素材直接被Chrome给屏蔽了。 这种用多维数据报表来定位和查找问题的办法相当有效,它实际上是高效的debug,仍然是一种“受”的策略。 **3.用A/B测试指导产品演进** 那么有没有数据驱动的“攻”的策略呢?当然也有,制定多个产品可能的改进方向,将它们放到线上,让实际数据来决定谁上谁下。这种A/B测试的方法,往往是大家理想中躺着就可以优化出好产品的魔法,也是“数定胜人”理论的基础之一。 说到A/B的系统框架,可并不是个的简单的事儿。如何建立准确性和效率兼备的实验框架,值得单独写一篇长文,我们在这里就不多谈了。 又或者是通过**拆解增长因子**增长指标:见[实例解析:五步实战数据增长](http://www.woshipm.com/data-analysis/2583363.html)。 ## 技术派: 技术派就比较偏向数据建模师的方向了,比如通过历史用户的行为数据,构建逻辑回归模型,判断用户下单意愿是否强烈并对其运营;又或者知道用户的兴趣偏好,根据用户浏览的商品和内容频次和时长,可以给用户推荐他喜欢的商品和内容,比如淘宝根据你经常浏览和购买的商品推荐商品给你,抖音根据你浏览的内容推荐你感兴趣的视频,平台通过全方位数据分析,比你更了解你自己,这就更是数据分析了对吧。 # 二、数据驱动增长注意事项 ## 1.公司内部数据基础差,缺乏增长方法,该如何入手 数据基础差,且缺乏增长方法是两个问题。数据基础好比足球运动员的基本功,增长方法好比进球能力。基本功不好,想要在比赛中进球那是非常困难的,除非瞎猫碰见死耗子,这在统计学里是小概率事件,我们姑且不论。所以当务之急是基本功,也就是改善数据基础差的问题,磨刀不误砍柴工。 那么我们就来唠唠数据基础差要怎么解决。君子生非异也,善假于物也。对于小公司,自己公司数据基础能力不够的时候,可以采用第三方服务,有的时候我们没必要去趟别人趟过的雷。埋点加上BI智能报表这一套自己做需要至少5个人吧,那一年开工资花个200多万合情合理吧,但是购买一个神测数据,其中就包括无埋点采集和智能展示功能了对吧,一年也就几十万,省出来的钱去做投放不香么。 再比如说反作弊,自己做渠道流量反作弊需要非常大的用户数据基础和算法能力,小公司在初期自己业务还不稳定的情况下,再自己做一套反作弊出来,岂不是让资源本不富裕的技术团队雪上加霜,你选择数盟、数美这样的专业团队岂不是更稳妥。这就好比你想吃新鲜的食物,买个冰箱不就解决了,但你偏不,非要是自己造个冰箱,那我只能默默地给您点个赞,转身离开。 但是一码归一码,当你的团队足够强大的时候,有些东西真的是要自己手工打造,比如渠道归因埋点采集、核心数据自建BI系统等,毕竟命运掌握在自己手里才是最稳妥的。 所以针对数据基础差的公司,我个人的建议是在企业初创期选择第三方服务作为过渡,等到企业壮大后再将命运真正掌握在自己手里,把一些能自建的数据体系都自建。毕竟出来混,迟早是要还的。 ## 2.中国产品的增长和美国硅谷增长黑客的增长的差异与共同点 “增长黑客”对于互联网圈的小伙伴来说一定不陌生,尤其是前几年,很多人也看了很多来自国外经典案列,比如网飞(Netflix)通过分析客户观看的电影和节目,发现凯文史派西参演的电影和政治题材的电视剧都非常受用户欢迎,所以才有的网飞制作的电视剧《纸牌屋》;Facebook做灰度测试的时候,发现新版本会使变现率下降25%,所以紧急终止新版上线等等,其核心理念是依靠技术和数据驱动,从而达到增长的目的。 但近几年大家发现 “增长”不香了,所谓的“增长”都是别人家的“增长”,要不就是来自外国的案例,到了国内会变得“水土不服”,毕竟国外连运营或渠道岗位都没有是吧,再看看APP store和国内的华米OV(华为、小米、vivo、oppo) 等安卓应用商店的商业化程度对比就可以知道了吧,国内的增长可以说是hard难度的增长,有的时候连老硅谷也会望尘莫及。 增长为什么会出现“水土不服”呢,主要有两点原因。第一点是中国人聪明,玩法很多,比如上面说的安卓市场商业化程度;第二点是美国的用户差异性和需求多样性较为单一,就拿事物来说,美国人就是披萨、汉堡对吧,再看看中国的食物分类,点开美团瞬间起立,因此出现了运营岗位是美国没有的。细分领域的复杂程度和高度的商业化模式是中美增长的主要差异。 增长的共同点是什么呢,是增长的核心理念,比如MVP模型、FRM、aha moment等等这些理念是永恒不变的。就好比你在中国和美国踢球一样,规则都是一样的,只不过人的身体素质不一样罢了。 ## 3.培养大局能力 “穷”玩mvp(最小可行性产品),“富”玩AB测试,为什么这说呢?有多少人是为了AB测试而AB测试,然后只是从中选出一种最优的解决方法,表面上确实是达到最优化,可是有没有想过我们在做AB测试的时候,其实就是“井底之蛙”在尝试哪种方式跳得更高?如果跳出井底,做的是最小可行性产品,视角贯穿整个产品,以“最小”的代价,收集更多的反馈信息,从而达到全局的增长。 如果只是不断的在某个节点上做AB测试,那么我只能说你在浪费资源,不如融合整条产品线,做一套MVP测试。 下面给大家讲个具体的例子: ![vAMi4FCFO30Ec92zVRdh.png](https://cos.easydoc.net/17082933/files/kf22ic8u.png) AB test(C):渠道新增素材测试,寻求最佳转化素材。素材我们有N种方法,最终得到C3这个素材是新增转化率最高的素材,那么我们就以为大功告成了,所有渠道、代理商都用C3素材,如果这么做我们是不是就是井底下,尝试哪种弹跳方式跳的最高的青蛙,但是我们跳出井底,会看到新增转化不单单是素材决定,其中包括产品、渠道、技术等等共同制约。 MVP:增长不是某一个部门,某一个环节的事情,是所有部门一起协作的共同结果。还是上面的例子,当我们跳出井底,通过MVP测试,新增转化的最佳增长方案可能是A1+B3+C3+D1和A2+B2+C1+D3,而不是单一的素材C3。 这就是我说的“穷”玩MVP,“富”玩AB,花同样的钱,是在井底玩还是在井外玩,井外岂不是性价比更高,所以我们要跳出局限,以全局视角看待增长。 ## 4.沟通 分析师最重要的技能就是沟通,先听懂老板的需求,再去分析,分析出来的结果要翻译成老板懂的语言,让老板明白你这么做的价值。 如果你的业务做得再好,但是无法让领导感知到,这个项目虽然有价值,但是不会使其价值最大化,如何将项目的结果让老板认可,这也是沟通的技巧,不要觉得不重要,这关系到项目是否能启动,项目的预算和规模。有能力的分析师会找到增长点,优秀的分析师会让领导感知增长点,要更多的预算继续扩大项目规模,最终拿到更好的成绩,最后的最后组员一起升职加薪。 举个小例子,我们要发现问题点(增长点),发现用户流失严重,要做流失用户召回项目。在做项目之前,我们为了评估召回项目的效果,要梳理监控指标,制定了触达召回率、触达召回率人数、召回商业转化率、召回后贡献留存率、第N日留存。我们又知道领导的KPI里有DAU、次日留存、第7日留存等等,又发现第7日留存与我们实验监控的指标密切相关,所以决定将第7日留存作为重点监控与汇报指标。 可能大家发现前面几个指标虽然都有可能增长,但是老板有可能感知不到,但如果与老板统一战线的话,老板能够迅速感知增长,如果再加上较强的沟通能力,那么预算和项目启动就不在话下。上述的培养大局观和向上向下的沟通能力,是我个人认为增长实验中最应该注意的2点。 # 三、数据运营解决不了的问题 用户如何选择和评价一款产品,在不同领域有着截然不同的规律。简单来说,我们可以把产品分为理性产品和感性产品。比方说,3C类电商,就是比较典型的理性产品,而服饰类电商,就是相对的感性产品。计算广告和推荐系统,虽然技术栈有相通之处,但前者是理性产品,后者的感性就强得多。 对于理性产品来说,由于问题的目标稳定且容易量化,数据是最关键的优化手段之一。拿广告产品来说,广告商使用它的目的,是为了获得更高的利润(当然这一利润可能是长期的,也可能是短期的),而不是为了获得心灵上的愉悦或快感。因此,当两个广告平台的投入产出比相差很大时,客户不会顾及哪个的使用体验更胜一筹,而是毫不犹豫地选择赚钱多的那个。 可是说到感性产品,就远没有那么简单了。记得微信刚火起来的时候,一大波从各行编外人员改行过来的互联网分析师们纷纷口吐莲花,分析为什么微信是人类社交的终结性产品,为什么还在用QQ的人都是历史车轮的阻碍者。可是去年,大约是同一拨分析师,又在纷纷讨论为什么90后用户群正在有微信向手机QQ转移。那么到底是QQ好还是微信好呢?这么问题在不同时间、不同用户情况下都有不同的答案,而我们也不可能对这类移动IM类的产品,给出一个普适性的量化目标。在感性产品的运营中,既然很难给出确定的优化目标,数据优化能起的作用就是有天花板的。 那么,数据化的运营在何种情形下会遇到明显的瓶颈呢?大致说来有如下几个方面: ## 1. 产品创新方向无法通过数据获得 几年前,有一家很火的游戏公司叫Zynga。据说,Zynga的老板并不鼓励创新,而是奉行“拿来主义”,将别人的游戏创意复制过来,用自己的一套数据运营体系快速超越对手。啥样的数据运营体系呢?说白了就是大量的A/B测试。设计说:草地得是绿的。产品经理说:不行,绿的红的数据说了算!于是,他们真的将流量分成红草地和绿草地两种配置,如果数据反映红草地用户付费高,那就把草地全变成红的,让植物学家们见鬼去吧!靠着这样的体系,Zynga一度在Facebook内长期霸占游戏排行榜的前三名。后来怎么样了呢?答案很清楚——现在还有谁知道Zynga么? Zynga的衰落当然原因很多,不过不得不说惟数据论的产品运营思路也是推手之一:你的数据测试体系再成熟,也不过就能搞搞草地涂红涂绿这样的雕虫小技,而游戏的新模式、新情节、新设计这样的真正创新方向,不是你具备了数据运营体系就可以具备,甚至也无法通过数据体系来判断高下。拿iPhone举个例子,大屏交互、Multi-touch、应用商店这些大放光彩的产品特征,皆出自乔布斯对产品的信念与洞察,而非市场和需求调研的结果。 即使是短期的产品小改进,彻底依赖A/B测试也行不通。我们是能根据数据把效果较好的A方案挑出来,可是如果你的备选方案中只有X/Y/Z,那再怎么测A也出不来。有人问了:如果把所有可能的产品选择全都列出来,让数据来选择呢?产品运营不是打麻将,那些牌组合起来总有个数儿,可真正有潜力的产品点需要具备系统性和创新性思维的产品经理,把别人喝咖啡和上厕所的时间都用在冥思苦想上,才有可能发现。再说了,就算是产品点象麻将牌一样列得清清楚楚,当产品因素和方向变得很多时,由于“dimension curse”的存在,我们也是没办法在有限时间内积累足够的统计数据进行决策的。 其实这儿已经说到了用户产品真正最重要的增长动力,那就是产品经理的洞见与创意。 ## 2. 长期用户反馈很难通过数据判断 那位Facebook的工程师在他的演讲里讲到了一个生动的例子:Facebook多年以来坚持采用严谨的A/B测试框架来决策一个新feature是否被线上系统所采用。但是,;结果是什么呢?他说到,实际上Facebook PC版的首页三年来没有任何重大的升级。其实,这个结果本身就是发人深思的:难道Facebook又变成了人类社交网络的终结产品,并且已经优化到了全局最优点,无法再改进了么? 结论显然不是这样的,我甚至认为在那三年当年被废弃掉的许多改版方案中,未必没有被误杀的版本:现有的A/B测试框架,都只能观测一个相对短时期内的数据表现,而长期的趋势与结论,如果没有对产品信念上坚持,很难等到开花结果的那一天。 我从传统纸媒杂志那儿听到过一个规律:一般来说,杂志在改版后的头几个月,都是骂声一片。然后几个月过后,新版也许会带来发行量的显著上升。这也可以作为短期数据缺陷的一个佐证吧。 ## 3. 博弈性的场景无法用数据决策 博弈性的场景在互联网产品里是很常见的。举个例子,大家可能知道互联网产品中有个Explore & Exploit问题,即用一部分相对随机流量探索未知空间,另一部分流量根据统计最优做决策。熟悉这个领域的朋友都知道,假如我们有两个E&E策略,是无法通过A/B测试来确定其优劣的。至于为什么,建议大家自行了结一下E&E的背景知识,权当一道思考题吧! 除了E&E,其他博弈性的场景还很多,例如广告里的机制设计问题(也就是竞价市场的规则如何制定);再比如有一定社交性的游戏运营策略,都是从原理上就无法通过简单分流量就能进行有效的A/B测试的。 当然,了解这些博弈性的问题,需要深入的产品见解和宏观思维能力,有很多奉行糙快猛主义的产品经理,宁可假装这样的问题并不存在。 # 四. 用户快速增长到底靠什么 数据这个账房先生虽然不可或缺,却并不是用户增长的定海神针。那么,真正能驱动一款产品的用户快速增长,靠的都是什么方法呢?从历史上成功的产品看,有下面一些思路值得注意: ## 1. 做出真正优秀的产品 说白了,用户快速增长最核心的问题,还是要千方百计酿出好酒来。产品好才是真的好,这是所有产品和运营应该追求的根本。由于上面讲的一些数据体系的问题,优秀产品经理的直觉与判断,不见得跟短期的数据表现相一致。在这样的岔路口上,坚持产品原则第一性,数据反馈第二性,长远来看是更加合理的。 需要特别说明,真正优秀的产品,一般来说都不是在分析存量市场的基础上想出来的,于是也没有现成的数据统计可以支撑。最近大火的Pokeman Go,用户增长之迅猛令人咋舌,不过我不认为它已经建立了完善的数据运营体系,即使有,也并不是其用户增长的关键。 几乎所有伟大产品的快速用户增长,都来自“好产品”这种内生动力,远的如Google、Facebook、iPhone,近的如某某打车和某某直播应用。 ## 2. 找到战略性推广渠道 什么是战略性推广渠道呢?简单地说,就是那些“价格便宜、量又足”的渠道。互联网很多产品的用户快速增长,往往是在这点上下足了功夫。 比方说,某跨境电商的崛起,与早期他们战略性地大量从Facebook购买流量有很大关系。而到了今天。Facebook的广告价格已经被抬高了很多,这样的渠道机会就不存在了。 在中国,非BAT的很多移动互联网产品快速增长,大多数都依赖预装这个战略渠道。厂商有预装,运营商有预装,方案商也有预装。在当年预装成本只有今天五分之一的时候积极花钱的产品,今天有不少已经成长为大公司了。 对于价值被低估的战略渠道保持敏锐的嗅觉,对产品的快速增长至关重要。 ## 3. 利用病毒式传播手段 病毒式传播的方法有两类,一类是传染,一类是传销。 所谓传染,就是诱导和捆绑式安装:通过一款已经有很大装机量的产品,通过威逼利诱甚至暗中作业的方式,将另一款产品也带到用户的终端上,往往是多快好省的好办法。甚至有时候在普通的广告渠道商这么做效果也不错,比方说:移动上各类清理或安全产品,往往在广告投放时让直接恐吓用户“你的手机内存过低”或“你的手机风险很大”,用户顿觉菊花一紧,当时就安装了。 传销大家都不陌生了。在社交网络产生以后,传销式的推广方案实施起来更加方便。种种五花八门的拼团模式,转发抽奖模式,虽然不能说是严格意义上的传销,其本质也是发动群众斗群众,这样的方法如果用好了,必定有奇效,谁用谁知道。 ## 4. 建立品牌的用户认知 互联网界对这一点的重要性认识是有所不足的。产品要立得住,保持葛大爷那样的躺姿也能挣钱,核心的用户认知非常关键。 在互联网界,大家往往奉直接效果传播为信条,在品牌建设方面的重视程度则有所不足。不过,近来oppo等公司的成功轨迹,让大家开始重新审视品牌和用户认知的作用。在笔者看来,成功的品牌建设带来的用户增长,可能是迅猛而又健康的。 讲了这么多,其实并不是说数据化运营不重要,而是说要达到产品的快速增长,其实还有更重要的事儿。今天所有的互联网从业者,既要掌握正确的数据化运营方法论,又不要盲目成为拜数据教的教徒。**做一款叫好又叫座的产品,虽然数据运营不可或缺,但还是要把核心精力放到“做出好酒”和“搬到巷子口”这两个关键点上。** --- **参考:** [以配送类APP为例,用数据驱动产品优化](http://www.woshipm.com/pd/3512040.html) [如何用数据分析驱动用户增长?](http://www.woshipm.com/data-analysis/4176399.html) [怎么用“用户数据“驱动“增长”?](http://www.woshipm.com/data-analysis/3557771.html) [数据分析,真的能驱动用户快速增长么?](http://www.woshipm.com/data-analysis/1183723.html) [实例解析:五步实战数据增长](http://www.woshipm.com/data-analysis/2583363.html)